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ABSTRACT

The dynamic evolution of coronal mass ejection (CME) in interplanetary space generates highly
turbulent, compressed, and heated shock-sheath. This region furnishes a unique environment to
study the turbulent fluctuations at the small scales and serve an opportunity for unfolding the
physical mechanisms by which the turbulence is dissipated and plasma is heated. How does the
turbulence in the magnetized plasma control the energy transport process in space and astrophysical
plasmas is an attractive and challenging open problem of the 21st century. For this, the literature
discusses three types of magnetohydrodynamics (MHD) waves/ fluctuations in magnetized plasma
as the magnetosonic (fast), Alfvénic (intermediate), and sonic (slow). The magnetosonic type is
most common in the interplanetary medium. However, Alfvénic waves/fluctuations have not been
identified to date in the ICME sheath. The steepening of the Alfvén wave can form a rotational
discontinuity that leads to an Alfvénic shock. But, the questions were raised on their existence based
on the theoretical ground. Here, we demonstrate the observable in-situ evidence of Alfvén waves
inside turbulent shock-sheath at 1 AU using three different methods desciribed in the literature. We
also estimate Elsässer variables, normalized cross helicity, normalized residual energy and which
indicate outward flow of Alfvén waves. Power spectrum analysis of IMF indicates the existence
of Alfvénic turbulence in ICME shock-sheath. The study has strong implications in the domain of
interplanetary space plasma, its interaction with planetary plasma, and astrophysical plasma.

1 INTRODUCTION

Coronal mass ejection (CME) is a huge cloud of solar plasma ( mass ∼ 3.2× 1014 g, kinetic energy ∼ 2.0× 1029 erg)
submersed in magnetic field lines that are blown away from the Sun which propagates and expands into the interplanetary
medium [Vourlidas et al., 2010, Howard, 2011]. Their studies are of paramount importance given their natural hazardous
effects on humans and the technology in space and ground [Schrijver and Siscoe, 2010, Moldwin, 2008, Schwenn,
2006]. The propagation speed of CMEs is often higher than the ambient solar wind which causes the formation of
fast, collision-less shocks ahead of CMEs [Kennel et al., 1985]. These shocks cause heating and compression of the
upstream (anti-sunward side) slow solar wind plasma, forming turbulent sheaths between the shocks and the leading
edge of the CMEs [Sonett and Abrams, 1963, Kennel et al., 1985, Zurbuchen and Richardson, 2006, Jian et al., 2006,
Echer et al., 2011, Richardson and Cane, 2011, Kilpua et al., 2017].

The shock and sheath are responsible mostly for (i) acceleration of solar energetic particles [Tsurutani and Lin, 1985,
Manchester IV et al., 2005, Gosling, 1983, Giacalone et al., 1994, Zank et al., 2000, Verkhoglyadova et al., 2015, Zank
et al., 2007, Li et al., 2003], (ii) significant geomagnetic activity [Tsurutani et al., 1988, Shen et al., 2018, Oliveira and
Raeder, 2014, 2015, Lugaz et al., 2016], (iii) Forbush decrease phenomena [Raghav et al., 2014, 2017, 2020, Bhaskar
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et al., 2016, Shaikh et al., 2017, 2018, 2020a], (iv) accelerate pickup ions [Giacalone and Jokipii, 1995, Gloeckler et al.,
1994, Zank et al., 1996], and (v) auroral lightning [Baker and Lanzerotti, 2016] etc. Besides this, the shock initiates a
magnetosonic wave in the magnetosphere and associated electric field accelerates electrons to MeV energies [Foster
et al., 2015, Kanekal et al., 2016].

Recent theoretical [Zank et al., 2014, 2015, Li et al., 2003, Le Roux et al., 2015, 2016, le Roux et al., 2018] and
observational [Khabarova et al., 2015, 2016, 2017, Zhao et al., 2018, 2019, Shaikh et al., 2018, 2019, 2020a,b, Raghav
and Shaikh, 2020] studies clearly indicate the local generation of quasi-2D structure [Zank et al., 2017, Adhikari
et al., 2017], flux ropes [Shaikh et al., 2017] or magnetic islands in sheath region, and they may responsible for the
acceleration of charged particles. Recently, the loss of electron flux from the radiation belt has been observed during the
shock-sheath encounter with Earth’s magnetosphere [Hietala et al., 2014, Kilpua et al., 2015a, 2017]. This may be
caused due to an increase in ultra-low frequency (ULF) wave power and dynamic pressure which is further responsible
for pitch angle scattering and radial diffusion of the electron flux. The precipitated high energy electron flux from
the radiation belt is used as a key parameter in climate models and the understanding of atmospheric chemistry and
associated climatological effects [Verronen et al., 2011, Andersson et al., 2014, Mironova et al., 2015]. In addition to
this, the other planets and their atmospheres are highly affected by the shock-sheath of CME, for example, in the case
of Mars, loss of the ions flux (> 9 amu) is observed which might be caused by its high dynamic pressure [Jakosky
et al., 2015].

CME induced shock-sheath provides a unique opportunity to investigate the nature of plasma turbulence, plasma
energy/fluctuation-dissipation, and plasma heating process. The plasma turbulence demonstrates the features such as
Alfvén waves, Whistler waves, ion cyclotron waves, or ion Bernstein waves, etc [Krishan and Mahajan, 2004, Gary and
Smith, 2009, Schekochihin et al., 2009, Shaikh, 2010, He et al., 2011, Sahraoui et al., 2012, Salem et al., 2012]. In
fact, sometimes plasma fluctuations do not exhibit any wave-like configuration at all but resemble nonlinear structures
such as current sheets [Sundkvist et al., 2007, Osman et al., 2010]. Various studies related to the nature of turbulence
and generation of waves in the shock-sheath region have reported in the recent past. Liu et al. [2006] observed the
mirror mode wave within the shock-sheath region. Kilpua et al. [2013] observed that the power of ultra-low frequency
fluctuations (in the dynamic pressure and magnetic field) peaks close to the shock-front and sheath-magnetic cloud
boundary. Furthermore, a large-amplitude magnetic field fluctuation, as well as intense irregular ULF fluctuations and
regular high-frequency wave activity is also observed in the downstream of CME shocks [Kataoka et al., 2005, Kajdič
et al., 2012, Goncharov et al., 2014]. Moreover, Whistler waves associated with weak interplanetary shocks are also
observed [Ramírez Vélez et al., 2012].

The solar wind is predominantly associated with turbulent plasma [Bruno and Carbone, 2005, 2013], which contributes
in acceleration of the solar wind [Verdini et al., 2009, Lionello et al., 2014], solar wind heating [Freeman, 1988,
Usmanov et al., 2011, Adhikari et al., 2015], and the scattering of the solar energetic particles [Li et al., 2003, Zank
et al., 2007]. The turbulence of the solar wind plasma increases due to interplanetary shock [Burlaga, 1971, Richter
et al., 1985, Jian et al., 2011]. The particle acceleration rate is controlled by the shock strength, the turbulence level, the
magnetic field strength, and the shock obliquity [Zank et al., 2000, 2006]. It has been noted that the turbulence behind
quasi-perpendicular shocks is more sporadic than that behind quasi-parallel shocks [Macek et al., 2015]. Note that, for
quasi-perpendicular shocks, the cross-field currents are strong, produces significant levels of downstream plasma wave
turbulence. Also, the shock steepening and the structure of shocks highly depends on the properties of the associated
turbulence [Adhikari et al., 2016]. Moreover, Zank et al. [2015] demonstrated that the shock downstream turbulent,
including vortical turbulence and Alfvénic like fluctuations is generated by the impact of upstream Alfvénic fluctuation
disturbances. Recently, Zank et al. [2018] and Adhikari et al. [2016] studied the interaction between turbulence and
termination shock and showed that quasi-two-dimensional turbulence dominates and slab-like turbulence plays a
secondary role in the downstream of the shock wave.

Besides this, various studies investigated Alfvénic fluctuations and Alfvén waves inside an ICME from 1 AU to 5.4 AU
[Li et al., 2017, Marsch et al., 2009, Yao et al., 2010, Haoming et al., 2012, LI et al., 2013, Li et al., 2016a, Gosling
et al., 2010, Raghav and Kule, 2018a] and calculated their contribution to local plasma heating[Li et al., 2017]. ICME
driven shocks are faster, stronger and show a larger distribution of shock parameters as compare to stream interaction
shock [Kilpua et al., 2015b]. Therefore, sheath plasma is expected to be highly compressed, hence pure Alfvén wave is
not at all expected. Moreover, the turbulent nature of the sheath suggests the existence of Alfvénic fluctuations [Kataoka
et al., 2005] but explicitly not found to date. Besides, the literature indicates a theoretical debate on the existence
of Alfvénic shock existence [Wu, 1987, Kunkel, 1966, Taniuti and Jeffrey, 1964] which may be expected during the
steepening of Alfvén waves. Therefore, it is necessary to study the characteristics of Alfvén wave/fluctuations inside
the highly turbulent sheath. Here we demonstrate the unambiguous in-situ evidence of Alfvén wave suggests nature of
Alfvénic turbulence within the shock-sheath region of CME.
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2 Event details

The shock-sheath under investigation is engendered by a CME which crossed the WIND and ACE spacecraft on 06th

November 2000. Figure 1 demonstrates the temporal variations of various in-situ plasma parameters and the interplane-
tary magnetic field (IMF) measured by the Wind spacecraft (The ACE spacecraft measurements are also studied, however
not presented here). The commencement of the shock at spacecraft is identified as a sudden enhancement in the total IMF
(Bmag), plasma beta (β), plasma density (Np), plasma temperature (Tp), and plasma speed (Vp), it is indicated by the
first vertical black dashed line. In general, Rankine-Hugoniot condition is used to confirm the shock. The same condition
is employed to the shock events observed by Wind spacecraft and its characteristics are given online at https://www.
cfa.harvard.edu/shocks/ac_master_data/00076/ac_master_00076.html. The shock is followed by large
fluctuations in IMF (See δB variations in the fifth panel of Figure 1) with enhanced magnetic field strength; high Np, &
Tp which is manifested as a shock-sheath region. The second shaded region shows the least fluctuations in Bmag and its
components, the slow variation in θ and φ, the slow steady trend in Vp, and low β. This indicates the presence of a ICME
magnetic cloud region [Zurbuchen and Richardson, 2006]. The studied event is also listed in ICME catalogs available on-
line e.g., https://wind.nasa.gov/list_plot_Wind/20001106_311_wind.png, http://www.srl.caltech.
edu/ACE/ASC/DATA/level3/icmetable2.htm, and http://space.ustc.edu.cn/dreams/wind_icmes/web/
png/WIND_20001106_223050_20001107_174216.png.

3 Alfvén wave identification

In literature, an Alfvén velocity is defined as:

VA =
B
√
µ0ρ

(1)

where B is a magnetic field and ρ is proton density. A typical Walén test is employed to confirm the presence of the
Alfvén wave in the solar wind. The Walén relation is described as [Walén, 1944, Hudson, 1971, Yang and Chao, 2013,
Yang et al., 2016, Raghav and Kule, 2018a,b]:

∆V = Rw∆VA (2)

where, Rw is the Walén slope, ∆V and ∆VA are the fluctuations in solar wind speed and fluctuations in Alfvén
speed (magnetic field) respectively. The presence of Alfvén wave/ variations in the solar wind is suggested by a high
correlation between the corresponding components of ∆V and ∆VA as well as Rw = ±1. The estimation of the correct
background magnetic field and solar wind speed is essential to deduce fluctuations in their respective components. In
this study, we confirmed the presence of Alfvén waves /fluctuations in the sheath region using three different methods
as follow;

3.1 Method 1

In the first method, for the shock sheath region, the average values are estimated for each component of the magnetic
field and solar wind vector respectively. We obtain ∆B by subtracting a mean value of the corresponding B component
from each measurement. As a result, the Alfvén velocity fluctuation is given as:

∆VA =
∆B
√
µ0ρ

(3)

Similarly, we calculate ∆V by subtracting averaged proton flow velocity from measured values of each component
respectively. In Figure 5 top three panels represents comparisons of x, y, and z of components of ∆VA and ∆V
respectively. It clearly shows correlated variations between their respective components within the shock-sheath region
and indicates the possibility of an Alfvén wave. Their correlation and regression analysis is depicted in Figure 2. The
Pearson correlation coefficients (R) of each x, y, and z components are –0.83,–0.44, and –0.75 and the corresponding
regression slopes are –0.90, –1.1, and –0.78. (For ACE spacecraft data with 64 sec time resolution, the correlation
coefficients are –0.80, –0.92 and –0.91 and the corresponding regression slopes are –0.50, –0.72, and –0.68 respectively.
It should be noted that the corresponding figures are not displayed here. The Anti-Sunward Alfvén wave is confirmed
by the significant negative correlation and regression coefficient ≈ − 1 confirms the presence of Anti-Sunward Alfvén
wave in the shock-sheath region of the examined CME [Gosling et al., 2010, Raghav and Kule, 2018a].

3.2 Method 2

In general, the mean values for selected regions or the average value of de Hoffmann-Teller (HT) frame are utilized
as background quantities [Raghav and Kule, 2018a, Raghav et al., 2018, Raghav and Kule, 2018b, Yang and Chao,
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Figure 1: The CME observed by the Wind spacecraft on 06th November, 2000 with time cadence of 92 sec. The
top to bottom panels represents different interplanetary parameters such as: total interplanetary field strength IMF
Bmag,elevation (θ◦ = arccos(−Bz

B ) − 90◦) & azimuth (φ◦ = arctan(
−By

−Bx
) + 180◦) angle, IMF vectors i.e. Bvec,

Plasma velocity (Vp), absolute value of IMF fluctuation i.e. δBi = Bi+1−Bi−1

2 , Proton density (Np), and Temperature
(Tp) & plasma beta (β) respectively. The shaded regions represents the shock-sheath of CME (cyan) and its magnetic
cloud (purple). All observations are in GSE coordinate system.
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Figure 2: The correlation and regression analysis between the respective ∆V and ∆VA components. The scattered
black circle with filled red color represent observations from Wind spacecraft with time cadence of 92 s. The R is the
coefficient of correlation. The equation in each panel indicate the linear fit relation between respective components of
∆V and ∆VA.

2013, Gosling et al., 2010]. However, Gosling et al. [2009] and Li et al. [2016b] suggested that the HT frame can
change in high-speed solar wind streams and the solar wind fluctuations are pertinent to a slow varying base value
of the magnetic field. In order to reduce the uncertainty in Alfvén wave identification, the fourth-order Butterworth
bandpass-filters are applied to each component of plasma velocity and magnetic field data. The equally spaced 10
logarithmic frequency bands are selected. The applied filters are 10s-15s, 15s-25s, 25s-40s, 40s-60s, 60s-100s, 100s-
160s, 160s-250s, 250s-400s, 400s-630s, and 630s-1000s. The Walén relation for each band-passed signal is analyzed as
follows:

Vi = ±RwVAi (4)

The band-passed V and VA components with the ith filter are represented here by Vi and VAi. The value of the
correlation coefficient between the respective components of Vi and VAi for each frequency band-passed signal confirms
the presence of Alfvén waves or Alfvénic oscillations in the region under study. A similar approach is used by Li et al.
[2016b]. The complete region under study is separated with 15 minutes of time window into the sub-regions. The
frequency-time distribution contour map with a 15-minute bin size is displayed in Figure 3. The value of the correlation
coefficient for each sub-region is shown as a colour map on the contour plot. Dark blue shed shows negative correlation,
while dark red shed shows a significant positive correlation. As a result, the presence of dominating Alfvénic flow along
the x, y, and z components are shown in Figure 3 contour map by the dark color-strips, particularly inside the sheath
region.

Very recently, [Chen and Boldyrev, 2017] utilized a wavelet coherence test to study the nature of plasma turbulence
at kinetic Alfvén scales in the Earth’s magnetosheath. The wavelet coherence test is generally employed to identify
regions in time-frequency space where the two-time series co-vary (but does not necessarily have high power). We have
also used this test to double-check the existence of Alfvénic fluctuations/waves in the ICME sheath region. Figure 4
demonstrate the magnitude squared wavelet coherence (γ), between VAx & Vx (top panel), VAy & Vy (middle panel),
and VAz & Vz (bottom panel) and the phase lag ψ (black arrow) for γ > 0.75 (i.e. for highly significant correlated
values), measured by Wind spacecraft. We observed a strong anti-correlation in all the components of VA & V within
the spacecraft frame frequencies range 0.25 mHz < fsc < 64 mHz. This significant anti-correlation (see the direction
of the black arrow in Figure 4) clearly indicates that the shock-sheath region is dominated by the Anti-sunward
deviation from anti-correlation is also visible for some frequency regions, especially towards the higher frequency side.
Kindly note that for a certain interval of time (see middle and trailing edge of the sheath region), we observed the
absence of Alfveńic fluctuations for certain frequency bands (for consistency, see Figure 3 and 4).

4 Properties of Alfvén wave

Here, we opine that the Walén test and definition of Alfvénicity are based to a large extent, on the approximate
incompressibility of the background. The top three panels of figure 5 make it very evident how closely correlated the
components of ∆V and ∆VA are to one another.
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Figure 3: Time-frequency distribution of correlation coefficient between VAi and Vi for complete event. Solar wind
speed and magnetic field are shown in last panel. Wind satellite 3s observations are utilized for the analysis.

Presence of Alfvénic fluctuation within the solar wind (especially in corotating high velocity streams) demands to use
Elsässer variables to separate out the contribution of “outward” and “inward” to the turbulence. Elsässer variables are
used in the theoretical studies [Elsasser, 1950, Dobrowolny et al., 1980a,b, Veltri et al., 1982, Marsch and Mangeney,
1987, Zhou and Matthaeus, 1989] as well as for the first time in interplanetary space (data analysis) by Grappin et al.
[1990], Tu et al. [1989], Tu and Marsch [1990]. The Elsässer variables are defined as:

~Z± = ~V ±
~B√
4πρ

, (5)

here, ~V and ~B are proton velocity and magnetic field fluctuation, measured in the GSE co-ordinate system. The ±
sign in front of ~B depends on the sign of [−k ·B0]. The Elsässer variables are defined in such a way that ~Z+ and ~Z−

always refers to the waves propagating outward and inward direction [Roberts et al., 1987a,b]. θV B is estimated as

θV B = cos−1(
−Bx
Bmag

) (6)

The equation 5 get modified for θV B ≤ 90◦ as ~z+ = ~V − ~VA and ~z− = ~V + ~VA , for θV B > 90◦ the equation will
remains the same. The energy associated with z+ and z− is defined as:

e± =
1

2
〈(z±)2〉, (7)

6
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Figure 4: Wavelet coherence analysis between solar wind velocity and magnetic field components during ICME sheath
and MC transit. The color bar represents magnitude-squared coherence and angle of black arrows from the x +
direction gives phase ψ angle between the two signals. The cone of influence is represented by the white dashed line
marks. The onset of shock is treated as 0 hours, the front edge of MC is ≈ 5.5 hours
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Moreover, the normalized cross helicity is estimated as

σc =
e+ − e−

e+ + e−
, (8)

also, the normalized residual energy defined as

σR =
ev − eb

ev + eb
(9)

where ev & eb is kinetic and magnetic energy respectively. σR is measure of the excess magnetic field energy with
respect to kinetic energy or vice versa Bruno and Carbone [2013]. Where, ev = 0.5 < v2 > and eb = 0.5 < b2 > are
kinetic and magnetic energy associated with Elsässer variables (z±). Here, v = 0.5(z+ + z−) and b = 0.5(z+ − z−)
respectively.

Here, the σc > 0 & σR < 0 indicates dominant flow of outward propagating waves [Matthaeus and Goldstein, 1982, Tu
et al., 1989]. In our study, we got highly positive value of normalized cross helicity in the shock-sheath region indicates
dominance of outward Alfvénic turbulence.

The Figure 6 demonstrate scattered plot of the normalized residual energy (σR) Vs normalized cross helicity (σc).
These defined parameters are valid only if σ2

R + σ2
c ≤ 1 i.e., the data points should lie within the circle [Bavassano

et al., 1998]. Note that most of the observed data points has positive σc. This implies that identified Alfvén wave within
the ICME sheath region dominantly propagating towards the earth.

5 PSD Analysis

We performed a power spectral density (PSD) analysis to study the characterization of the multi-scale nature of
shock-sheath turbulences/fluctuations. Figure 7 represents the spectral output for the Bx, By and Bz components of the
IMF. The common feature of the incompressible MHD plasma turbulence i.e. Kolmogorov-like turbulence is observed
in the intermediate frequency range which is consistent with ∼ f−1.66 [Bruno and Carbone, 2005]. We believed that
the entire turbulent interactions within these regimes are governed by the Alfvénic cascade.

We estimate cyclotron frequencies for proton and alpha particle for the observed magnetic field of 5− 12 nT range,
which turn out to be 0.47 Hz − 1.10 Hz for proton and 0.24 Hz − 0.55 Hz for alpha. The various studies reveal that
at length-scales beyond the MHD regime, the power spectrum shows spectral break which halts the Alfvénic cascade
[Goldstein et al., 1994, Leamon et al., 1999, Bale et al., 2005, Alexandrova et al., 2008, Sahraoui et al., 2009, Shaikh
and Shukla, 2009]. At ∼ 0.5 − 0.6 Hz, the PSD spectrum “breaks" from a ∼ f−1.6 power-law inertial range to a
∼ f−3.1 dissipation range (see Figure 7). However, Perri et al. [2010] suggest that the spectral break in the solar wind
is independent of the distance from the Sun and that of both the ion-cyclotron frequency and the proton gyro-radius.
Therefore, it is also possible that the observed high-frequency break in our study is caused by a combination of different
physical processes as a result of high compression within the shock-sheath region. The other possible mechanism for
the spectral break may result from energy transfer processes related to; 1) kinetic Alfvén wave (KAW) [Hasegawa and
Chen, 1976], 2) electromagnetic ion-cyclotron-Alfvén (EMICA) waves [Wu and Yoon, 2007, Gary et al., 2008], or the
fluctuation associated with the Hall magnetohydrodynamics (HMHD) plasma model [Alexandrova et al., 2007, 2008].

At higher frequencies, the spectrum of the magnetic field fluctuations has power-law dependence as ∼ f−α, where,
the value of α may range from 2 to 4. The average value of the α is close to 7/3 [Leamon et al., 1998, Smith et al.,
2006, Alexandrova et al., 2008]. In our study, it is about ∼ −3.1. These higher frequency part of the spectrum may
be associated either with a dissipative range [Leamon et al., 1998, Smith et al., 2006] or with a different turbulent
energy cascade caused by dispersive effects [Stasiewicz et al., 2000, Sahraoui et al., 2006, Galtier and Buchlin, 2007,
Alexandrova et al., 2008, Sahraoui et al., 2009, Li et al., 2016b]. Stawicki et al. [2001] proposed that suppression of the
Alfvénic fluctuations are due to the ion cyclotron damping at intermediate wave frequency (wavenumber), hence the
observed power spectra are weakly damped dispersive magnetosonic and/or whistler waves (unlike Alfvén waves). The
presence of the whistler wave mode in the high-frequency regime was proposed by the [Beinroth and Neubauer, 1981].
Goldstein et al. [1994] found out the existence of multi-scale waves (Alfvénic, whistlers, and cyclotron waves) with a
single polarization in the dissipation regime of the spectrum. Observation of the obliquely propagating KAWs (in the
ω < ωci regime or Alfvénic regime) puts a question about the spectral breakpoint due to damping of ion cyclotron waves
[Howes et al., 2008]. The Kinetic [Howes et al., 2008] and Fluid [Shaikh and Shukla, 2009] simulations show that the
ion inertial length-scale is comparable to that of the spectral breakpoint near the characteristic turbulent length-scales.
For the length-scales larger than the ion inertial length-scales, the simulations demonstrate Kolmogorov-like spectra.
Moreover, for smaller ion inertial length-scales, they observed the steeper spectrum that is close to f−7/3.
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Figure 5: Top three panels demonstrate the temporal variation of Alfvén velocity fluctuation vector ∆VA (red) and that
of the proton flow velocity fluctuation vector ∆V (blue). It demonstrates Alfvénic and shock-sheath characteristic of
the studied region of an ICME. The fourth panel represents the ratio of inward to outward Elässer variable. The fifth
panel gives appearance of the angle between solar wind velocity and magnetic field. The Sixth panel and seventh panels
represents the temporal variation of the normalized cross helicity (σc) and normalized residual energy (σR) respectively.
The analysis is performed using wind spacecraft data with time cadence of 3 sec.
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Figure 6: The scatter plot of normalized residual energy (σr) and normalized cross helicity (σc) , estimated by Wind
spacecraft data of 2000 November 06.

6 Discussion

Using three distinct techniques, we found a substantial correlation between the variations in the magnetic field and
velocity vectors. This suggests that the magnetic field and fluid velocity are oscillating simultaneously and propagating
in the same direction as the magnetic tension force. The various plasma features (see Figure 2, 3,4,5) confirms the
presence of Alfvén wave in shock-sheath region. Similar analysis has been performed for various ICME-sheath regions
observed by Wind spacecraft and listed in https://wind.nasa.gov/ICMEindex.php. It is important to note that
Alfvén waves/fluctuations have not been found in all the studied ICME-sheath events. Moreover, only following events
shows inward or outward flow of Alfvén waves/fluctuations out of studied events; e.g Very soon we will analysed all the
events listed in aforementioned catalogue to study their possible origin, propagation and dissipation in sheath plasma.

The overall distinguishable features of Alfvén waves during the shock sheath strongly support dominant Alfvénic
turbulence. Moreover, the Alfvén waves are pervasive in the solar wind, and it is important to note that the method
2 (section 3.2, Figure 3) shows the presence of Alfvén wave in up-stream of shock. However, their transmission in
shock-sheath is questionable. The solar wind at 1 AU is overwhelmingly Alfvénic, therefore it is possible that the same
Alfvénic background is present in the ICME shock-sheath region too and a significant compressible component is just
superposed on that [Chen et al., 2013].

The Alfvén waves lead to non-linear interactions [Dobrowolny et al., 1980a] which are crucial for the dynamical
evolution of a Kolmogorov-like MHD spectrum [Bruno and Carbone, 2013]. We have also performed a power spectral

10
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Figure 7: Power spectra of magnetic fluctuations along the Bx direction in GSE coordinate (black color) as a function
of frequency in the spacecraft frame as measured by Wind on 2000 November 06, from 09:15 to 14:16 UTC, computed
with FFT (black) algorithms. We have used WINDS high resolution (11 Hz) IMF data.
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density (PSD) analysis for all IMF vector components. It depicts Kolmogorov-like turbulent nature (The PSD analysis
follows f−1.66 spectrum) for the frequency range between 0.4× 10−3 Hz to 0.5 Hz in the studied the shock-sheath
region. Thus the existence of Alfvén waves with the Kolmogorov-like turbulence depicts Alfvénic turbulent nature of
the shock-sheath. Thus, we observed the continued cascade of energy from large scales to smaller scales of wavelengths
and eventually to such small scales that the plasma no longer behaves like a fluid due to a change in velocity and
magnetic field fluctuations. At this scale, the particle distribution is affected by the magnetic field which may lead
to plasma heating through resonant interactions [Tsurutani and Lakhina, 1997]. We opine that the plasma heating in
shock-sheath could be associated with an above-discussed process.

Alfvénic-like fluctuations may also occur in the impact sheath, but the dominant one will be the quasi-2D structure
[Zank et al., 2018]. For example, Zheng and Hu [2018] used the Grad-Shafranov reconstruction method to show the
flux rope in the impact sheath area. However, our observations clearly demonstrate the existence of Alfvén waves in the
sheath region. It does not mean that Alfvénic fluctuations dominantly seen in the sheath, rather a statistical study will
put some light on the aforementioned issue.

7 Implications

Several open questions need to be addressed in view of turbulent nature in highly compressed and heated shock-sheath
such as, (i) What is the origin of a turbulent cascade in shock-sheath? Is it the coronal plasma or local driving?; (ii) How
does the cascade modify the shock-sheath plasma?; (iii) How do the turbulent fluctuations get dissipated into heat?; (iv)
What is more important for energy dissipation, non-linear turbulent heating, or resonant wave-particle interactions?; (v)
Can shock-sheath turbulence be parameterized and included in heliospheric models for space weather prediction?

Recently, the presence of the Alfvén wave has been seen in a magnetic cloud of CME [Raghav and Kule, 2018a]. It is
manifested that the Alfvénic oscillations in a magnetic cloud of CME may cause the internal magnetic reconnection
and/or thermal anisotropy in plasma distribution which leads to the disruption of the stable magnetic structure of the
CME [Raghav and Kule, 2018b]. Their presence in the magnetic cloud of CME also controls the recovery phase of
the geomagnetic storms [Raghav et al., 2018, 2019]. In the introduction section of the article, we emphasize that the
shock-sheath of CME not only affects the interplanetary plasma characteristics but also affects the dynamics of the
magnetosphere, ionosphere, radiation-belt, and upper atmosphere of the Earth. It affects the other planetary exospheres
as well. Therefore how the typical configuration such as Alfvén fluctuations embedded shock-sheath influence the
overall solar-terrestrial plasma will be intriguing and may activate the possible direction of future studies. One can
also expect similar features of shock-sheath in interstellar medium as well e.g. supernovae shocks and associated sheaths.

. . .
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